Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368
A. Jeyabharathi, ${ }^{\text {a }}$ M. N. Ponnuswamy, ${ }^{\text {a }}$ A. Amal Raj, ${ }^{\text {b }}$ R. Raghunathan, ${ }^{\text {b }}$ Ibrahim Abdul Razak, ${ }^{\text {c }}$ Anwar Usman, ${ }^{\text {c }}$ Suchada Chantrapromma ${ }^{\text {c }}$ t and Hoong-Kun Fun ${ }^{\text {c* }}$
${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ${ }^{\text {b }}$ Department of Organic
Chemistry, University of Madras, Guindy Campus, Chennai 600025 , India, and ${ }^{\text {c } X \text {-ray }}$ Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

+ Permanent Address, Department of Chem-
istry, Faculty of Science, Prince of Songkla
University, Hat-Yai, Songkhla 90112, Thailand.
Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.057$
$w R$ factor $=0.141$
Data-to-parameter ratio $=13.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3-Benzylidene-1'-methyl-4'-phenylcyclohexanespiro-3'-pyrrolidine-2'-spiro-3"-indoline-2,2"-dione

In the title compound, $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$, there are two molecules in the asymmetric unit. In both molecules, the pyrrolidine ring adopts an envelope conformation whereas the conformation of the cyclohexane ring is half-chair. The oxindole moiety is almost perpendicular to the pyrrolidine ring; the benzylidene moiety and the phenyl ring are in equatorial and bisectional configurations with respect to their attached pyrrolidine and cyclohexanone rings, respectively. Intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions stabilize the molecular structure and the packing in the crystal.

Comment

Substituted pyrrolidine compounds have gained much importance since they are the basic structural elements of many alkaloids and pharmacologically active compounds, while molecules with the indole moiety possess anti-inflammatory and antibacterial properties. Our interest in preparing the pharmacologically active pyrrolidine compounds led us to the title compound, (I), and we have undertaken an X-ray crystal structure determination of (I) in order to establish the conformation of the structure.

In the title structure (Fig. 1), the asymmetric unit contains a pair of molecules $(A$ and $B)$ with almost identical geometry, except for the rotation of the phenyl rings about the $\mathrm{C} 12-\mathrm{C} 13$ bond. In the two molecules, the bond lengths and angles show normal values and agree with each other (Allen et al., 1987). The values within the oxindole moiety are slightly different compared with those of the indole derivative (ZukermanSchpector et al., 1992), especially with regard to the longer

Received 20 August 2001
Accepted 23 August 2001
Online 31 August 2001
$\mathrm{C} 1-\mathrm{C} 8$ and $\mathrm{C} 7-\mathrm{C} 8$ bond lengths, due to the spiro-atom character and the steric effect of the bulky group substituted at C 8 . The arguments can also be applied to the longer $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bond lengths within the pyrrolidine ring, where the N 1 atom is in a pyramidal configuration (Perales et al., 1977), compared with those of the pyrrolidine ring in a previous study (Gzella \& Wrzeciono, 1990). The average C-C bond distance in the cyclohexane ring is 1.520 (4) \AA in the two molecules.

In both molecules A and B, the pyrrolidine ring adopts an envelope conformation and the cyclohexane ring is in a halfchair conformation, with a dihedral angle between them of $84.3(1)^{\circ}$ in molecule A and $85.3(1)^{\circ}$ in molecule B. The conformations were confirmed by their puckering parameters (Cremer \& Pople, 1975); for the pyrrolidine ring $Q_{2}=$ 0.420 (3) \AA and $\varphi_{2}=187.4(4)^{\circ}$ in molecule A and $Q_{2}=$ 0.405 (3) \AA and $\varphi_{2}=0.7$ (4) ${ }^{\circ}$ in molecule B, while for the cyclohexane ring, $Q_{2}=0.281(3), Q_{3}=0.403(3), Q_{T}=$ 0.491 (3) \AA and $\varphi_{2}=258.6$ (6) ${ }^{\circ}$ in molecule A, and $Q_{2}=$ 0.311 (3), $Q_{3}=-0.381$ (3), $Q_{T}=0.492$ (3) \AA and $\varphi_{2}=93.1$ (5) ${ }^{\circ}$ in molecule B. The phenyl ring attached at C 23 is in a bisectional configuration with respect to the pyrrolidine ring in both molecules, corresponding to a dihedral angle between the phenyl and pyrrolidine rings of $83.6(2)^{\circ}$ in molecule A and $81.4(2)^{\circ}$ in molecule B. The phenyl ring attached at C 12 makes dihedral angles of $63.2(2)$ and $46.2(2)^{\circ}$ with the cyclohexane ring in molecules A and B, respectively. In the oxindole moiety, the phenyl and pyrrole rings are individually planar and make a dihedral angle of 4.1 (2) and 4.2 (2) ${ }^{\circ}$ in molecules A and B, respectively, while the attached $\mathrm{O} 2 A$ and $\mathrm{O} 2 B$ atoms deviate by -0.204 (2) and 0.171 (2) \AA, respectively, from the mean planes of the oxindole moieties in the two molecules. The oxindole moiety makes dihedral angles of 89.9 (1) and $87.8(1)^{\circ}$ with the pyrrolidine ring in molecules A and B, respectively, corresponding to nearly perpendicular configurations.

The closest distances of $\mathrm{C} 12 \cdots \mathrm{O} 1$ and $\mathrm{C} 23 \cdots \mathrm{O} 1$ are within 2.764 (3) A (Table 2), implying intramolecular non-bonded hydrogen interactions and forming closed $\mathrm{O} 1-\mathrm{C} 10-\mathrm{C} 11-$ $\mathrm{C} 12-\mathrm{H} 12$ and $\mathrm{O} 1-\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 23-\mathrm{H} 23$ rings. These interactions stabilize the molecular structure, while the observed intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ (Table 2) interactions interconnecting molecules A and B in different asymmetric units, as well as van der Waals interactions, stabilize the crystal structure.

Experimental

A mixture of 2,6-dibenzylidenecyclohexanone (1 mmol), sarcosine $(1 \mathrm{mmol})$ and isatin $(1 \mathrm{mmol})$ in methanol was refluxed for 4 h . After the reaction, the solvent was evaporated in vacuo and the resulting crude product was purified by column chromatography using a hexane-ethyl acetate mixture (9:1). Slow evaporation of the isolated compound from ethanol solution gave light-yellow single crystals suitable for X-ray structure determination.

Crystal data

$\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$	$Z=4$
$M_{r}=448.54$	$D_{x}=1.249 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=12.3624$ (1) \AA	Cell parameters from 6647
$b=13.0640$ (2) \AA	reflections
$c=17.1439$ (3) A	$\theta=1.3-29.5^{\circ}$
$\alpha=110.066$ (1) ${ }^{\circ}$	$\mu=0.08 \mathrm{~mm}^{-1}$
$\beta=93.200$ (1) ${ }^{\circ}$	$T=293$ (2) K
$\gamma=110.534(1)^{\circ}$	Slab, light yellow
$V=2386.13$ (6) \AA^{3}	$0.36 \times 0.24 \times 0.16 \mathrm{~mm}$
Data collection	
Siemens SMART CCD areadetector diffractometer	8228 independent reflections 4402 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.064$
Absorption correction: empirical	$\theta_{\text {max }}=25.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h=-14 \rightarrow 14$
$T_{\text {min }}=0.972, T_{\text {max }}=0.988$	$k=-15 \rightarrow 9$
13509 measured reflections	$l=-20 \rightarrow 20$
Refinement	
Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0379 P)^{2}\right]$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$	where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$w R\left(F^{2}\right)=0.141$	$(\Delta / \sigma)_{\text {max }}<0.001$
$S=0.88$	$\Delta \rho_{\text {max }}=0.23 \mathrm{e} \AA^{-3}$
8228 reflections	$\Delta \rho_{\text {min }}=-0.26 \mathrm{e} \AA^{-3}$
616 parameters	Extinction correction: SHELXTL
H -atom parameters constrained	Extinction coefficient: 0.025 (1)

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

Molecule A		Molecule B	
$\mathrm{~N} 1-\mathrm{C} 8$	$1.460(3)$	$\mathrm{N} 1-\mathrm{C} 22$	$1.468(3)$
$\mathrm{N} 1-\mathrm{C} 22$	$1.463(3)$	$\mathrm{N} 1-\mathrm{C} 30$	$1.472(3)$
$\mathrm{N} 1-\mathrm{C} 30$	$1.43(3)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.472(3)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.359(3)$	$\mathrm{N} 2-\mathrm{C} 1$	$1.343(4)$
$\mathrm{N} 2-\mathrm{C} 2$	$1.397(3)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.397(3)$
$\mathrm{C} 11-\mathrm{C} 12$	$1.332(3)$		
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 22$	$106.6(2)$	$\mathrm{C} 22-\mathrm{N} 1-\mathrm{C} 30$	$113.0(2)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 30$	$115.8(2)$	$\mathrm{C} 22-\mathrm{N} 1-\mathrm{C} 8$	$106.5(2)$
$\mathrm{C} 22-\mathrm{N} 1-\mathrm{C} 30$	$113.8(2)$	$\mathrm{C} 30-\mathrm{N} 1-\mathrm{C} 8$	$114.4(2)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$-176.8(2)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$-179.5(2)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 18$	$51.0(4)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 18$	$-39.5(4)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 12 A-\mathrm{H} 12 A \cdots \mathrm{O} 1 A$	0.93	2.33	$2.704(3)$	103
$\mathrm{C} 12 B-\mathrm{H} 12 B \cdots \mathrm{O} 1 B$	0.93	2.34	$2.730(3)$	105
$\mathrm{C} 23 A-\mathrm{H} 23 A \cdots \mathrm{O} 1 A$	0.98	2.23	$2.751(3)$	112
$\mathrm{C} 23 B-\mathrm{H} 23 B \cdots \mathrm{O} 1 B$	0.98	2.23	$2.764(3)$	113
$\mathrm{~N} 2 A-\mathrm{H} 2 A A \cdots \mathrm{~N} 1 B^{\mathrm{i}}$	0.86	2.33	$3.029(3)$	139
$\mathrm{~N} 2 B-\mathrm{H} 2 B A \cdots \mathrm{O} 1 A^{\text {ii }}$	0.86	2.06	$2.848(3)$	153
Symmetry codes: (i) $1-x, 1-y,-z ;$ (ii) $-x, 1-y,-z$				

After checking their presence in a difference map, all H atoms were fixed geometrically and allowed to ride on the parent C atoms and refined isotropically. Due to the large fraction of weak data at higher angles, the 2θ maximum was limited to 50°.

Figure 1
The molecular structure of (I) with 30% probability displacement ellipsoids

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

AJ thanks the University Grants Commission for the award of a teacher fellowship under FIP. HKF and IAR thank the Malaysian Government and Universiti Sains Malaysia for the research grant, R\&D No. 305/PFIZIK/610961, and AU thanks to Universiti Sains Malaysia for a Visiting Postdoctoral Fellowship.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1-19.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Gzella, A. \& Wrzeciono, U. (1990). Acta Cryst. C46, 2107-2109.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Perales, A., Cano, F. H. \& Garcia-Blanco, S. (1977). Acta Cryst. B33, 31723175.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Zukerman-Schpector, J., Castellano, E. E., Pinto, A. D. C., da Silva, J. F. M. \& Barcellos, M. T. F. C. (1992). Acta Cryst. C48, 760-762.

